神经网络的活跃区域查找告诉我们,在做出决定时,神经网络的重点是哪个区域,这为我们提供了可解释性的基础,当神经网络做出分类决策时。我们提出了一种算法多动态掩码(MDM),这是一种具有解释性的通用显着图查询方法。它的建议基于一个假设:当图像输入到已经训练的神经网络时,与分类有关的激活特征将影响神经网络的分类结果,并且与分类无关的特征几乎不会影响分类结果网络。 MDM:一种基于学习的端到端算法,用于查找神经网络分类感兴趣的区域。它具有以下优点:1。它具有推理过程的解释性。 2.它是通用的,可以用于任何神经网络,并且不取决于神经网络的内部结构。 3.搜索性能更好。由于该算法基于学习生成面具并具有适应不同数据和网络的能力,因此性能比上一篇论文中提出的方法更好。对于MDM显着图搜索算法,我们在实验上比较了各种显着性图搜索方法的性能指标和MDM的Resnet和Densenet作为训练有素的神经网络。 MDM的搜索效果性能达到了最新的状态。我们将MDM应用于可解释的神经网络Protopnet和Xprotonet,从而改善了模型的解释性和原型搜索性能。我们可视化卷积神经体系结构和变压器体系结构在显着图搜索中的性能。
translated by 谷歌翻译
准确性和多样性是产生自然和语义上正确标题的两个必不可少的迁移表现。由于权衡差距,已经做出了许多努力,以增强其中的一个。在这项工作中,我们将证明,从人类注释中得出的较低准确性标准(保留一个输出)不适用于机器生成的标题。为了通过稳定的精度性能提高多样性,我们利用了一种新颖的变异变压器框架。通过引入“不可见的信息先验”和“自动选择GMM”,我们指示编码器在不同场景中学习精确的语言信息和对象关系以确保准确性。通过引入“ Range-Median奖励”基线,我们在基于RL的多样性保证培训过程中保留了更加多样化的候选人,并具有更高的奖励。实验表明,我们的方法可以同时促进准确性(cider)和多样性(自助),高达1.1%和4.8%。同样,与人类注释相比,我们的方法具有最相似的语义检索性能,R@1(I2T)为50.3(人类50.6)。
translated by 谷歌翻译
In recent years, arbitrary image style transfer has attracted more and more attention. Given a pair of content and style images, a stylized one is hoped that retains the content from the former while catching style patterns from the latter. However, it is difficult to simultaneously keep well the trade-off between the content details and the style features. To stylize the image with sufficient style patterns, the content details may be damaged and sometimes the objects of images can not be distinguished clearly. For this reason, we present a new transformer-based method named STT for image style transfer and an edge loss which can enhance the content details apparently to avoid generating blurred results for excessive rendering on style features. Qualitative and quantitative experiments demonstrate that STT achieves comparable performance to state-of-the-art image style transfer methods while alleviating the content leak problem.
translated by 谷歌翻译
In recent years, the Transformer architecture has shown its superiority in the video-based person re-identification task. Inspired by video representation learning, these methods mainly focus on designing modules to extract informative spatial and temporal features. However, they are still limited in extracting local attributes and global identity information, which are critical for the person re-identification task. In this paper, we propose a novel Multi-Stage Spatial-Temporal Aggregation Transformer (MSTAT) with two novel designed proxy embedding modules to address the above issue. Specifically, MSTAT consists of three stages to encode the attribute-associated, the identity-associated, and the attribute-identity-associated information from the video clips, respectively, achieving the holistic perception of the input person. We combine the outputs of all the stages for the final identification. In practice, to save the computational cost, the Spatial-Temporal Aggregation (STA) modules are first adopted in each stage to conduct the self-attention operations along the spatial and temporal dimensions separately. We further introduce the Attribute-Aware and Identity-Aware Proxy embedding modules (AAP and IAP) to extract the informative and discriminative feature representations at different stages. All of them are realized by employing newly designed self-attention operations with specific meanings. Moreover, temporal patch shuffling is also introduced to further improve the robustness of the model. Extensive experimental results demonstrate the effectiveness of the proposed modules in extracting the informative and discriminative information from the videos, and illustrate the MSTAT can achieve state-of-the-art accuracies on various standard benchmarks.
translated by 谷歌翻译
Machine learning models are typically evaluated by computing similarity with reference annotations and trained by maximizing similarity with such. Especially in the bio-medical domain, annotations are subjective and suffer from low inter- and intra-rater reliability. Since annotations only reflect the annotation entity's interpretation of the real world, this can lead to sub-optimal predictions even though the model achieves high similarity scores. Here, the theoretical concept of Peak Ground Truth (PGT) is introduced. PGT marks the point beyond which an increase in similarity with the reference annotation stops translating to better Real World Model Performance (RWMP). Additionally, a quantitative technique to approximate PGT by computing inter- and intra-rater reliability is proposed. Finally, three categories of PGT-aware strategies to evaluate and improve model performance are reviewed.
translated by 谷歌翻译
We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural rendering. Motivated by the fact that informative point cloud features should be able to encode rich geometry and appearance cues and render realistic images, we train a point-cloud encoder within a devised point-based neural renderer by comparing the rendered images with real images on massive RGB-D data. The learned point-cloud encoder can be easily integrated into various downstream tasks, including not only high-level tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image synthesis. Extensive experiments on various tasks demonstrate the superiority of our approach compared to existing pre-training methods.
translated by 谷歌翻译
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services which require low delay and high accuracy. Sampling rate adaption which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this paper, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
translated by 谷歌翻译
The traditional statistical inference is static, in the sense that the estimate of the quantity of interest does not affect the future evolution of the quantity. In some sequential estimation problems however, the future values of the quantity to be estimated depend on the estimate of its current value. This type of estimation problems has been formulated as the dynamic inference problem. In this work, we formulate the Bayesian learning problem for dynamic inference, where the unknown quantity-generation model is assumed to be randomly drawn according to a random model parameter. We derive the optimal Bayesian learning rules, both offline and online, to minimize the inference loss. Moreover, learning for dynamic inference can serve as a meta problem, such that all familiar machine learning problems, including supervised learning, imitation learning and reinforcement learning, can be cast as its special cases or variants. Gaining a good understanding of this unifying meta problem thus sheds light on a broad spectrum of machine learning problems as well.
translated by 谷歌翻译
Most Graph Neural Networks follow the message-passing paradigm, assuming the observed structure depicts the ground-truth node relationships. However, this fundamental assumption cannot always be satisfied, as real-world graphs are always incomplete, noisy, or redundant. How to reveal the inherent graph structure in a unified way remains under-explored. We proposed PRI-GSL, a Graph Structure Learning framework guided by the Principle of Relevant Information, providing a simple and unified framework for identifying the self-organization and revealing the hidden structure. PRI-GSL learns a structure that contains the most relevant yet least redundant information quantified by von Neumann entropy and Quantum Jensen-Shannon divergence. PRI-GSL incorporates the evolution of quantum continuous walk with graph wavelets to encode node structural roles, showing in which way the nodes interplay and self-organize with the graph structure. Extensive experiments demonstrate the superior effectiveness and robustness of PRI-GSL.
translated by 谷歌翻译
Face forgery detection plays an important role in personal privacy and social security. With the development of adversarial generative models, high-quality forgery images become more and more indistinguishable from real to humans. Existing methods always regard as forgery detection task as the common binary or multi-label classification, and ignore exploring diverse multi-modality forgery image types, e.g. visible light spectrum and near-infrared scenarios. In this paper, we propose a novel Hierarchical Forgery Classifier for Multi-modality Face Forgery Detection (HFC-MFFD), which could effectively learn robust patches-based hybrid domain representation to enhance forgery authentication in multiple-modality scenarios. The local spatial hybrid domain feature module is designed to explore strong discriminative forgery clues both in the image and frequency domain in local distinct face regions. Furthermore, the specific hierarchical face forgery classifier is proposed to alleviate the class imbalance problem and further boost detection performance. Experimental results on representative multi-modality face forgery datasets demonstrate the superior performance of the proposed HFC-MFFD compared with state-of-the-art algorithms. The source code and models are publicly available at https://github.com/EdWhites/HFC-MFFD.
translated by 谷歌翻译